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Abstract. This paper develops a formal mereological framework
for generating prime numbers through recursive construction from
part–whole relationships. We define a sequence P = {Pn : n ∈ N}
with P1 = 1 that generates all natural numbers through finite prod-
ucts, where primality emerges from structural irreducibility within
the recursive framework. While the modern convention excludes
1 to preserve unique factorization, our recursive approach incor-
porates it as a foundational element without loss of equivalence
for n ≥ 2. The framework yields {1, 2, 3, 5, 7, 11, . . . } while align-
ing with classical number theory beyond the first element. This
generative account distinguishes between backward–looking divis-
ibility tests and forward–looking recursive construction, offering a
complementary perspective on prime foundations. The approach
extends systematically to the real numbers, demonstrating that
alternative recursive axiomatizations can preserve mathematical
rigor while revealing structural insights into mathematical founda-
tions.

1. Introduction

The definition and classification of prime numbers have evolved over
mathematical history, reflecting both computational needs and theoret-
ical developments. While Euclid’s Elements [1]established fundamental
properties of primes, the question of whether 1 should be considered
prime remained debated into the early 20th century. The modern con-
vention excludes 1 to preserve unique factorization, but this exclusion
may be interpreted as a convention rather than a structural necessity.

The modern mathematical convention, which excludes 1 from the
primes, emerged primarily to preserve the elegant statement of the
Fundamental Theorem of Arithmetic and to avoid systematic excep-
tions in various number-theoretic results. This conventional choice has
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proven mathematically fruitful, enabling clean formulations of impor-
tant theorems and supporting the development of abstract algebra and
number theory.

This paper explores an alternative approach with recursive construc-
tion that naturally incorporates 1 as a foundational element. Rather
than challenging established mathematical practice, we investigate how
different foundational choices can preserve mathematical content while
revealing alternative structural relationships. Our recursive framework
demonstrates complete equivalence with classical prime theory for all
n ≥ 2 while providing additional insights into the generative structure
underlying arithmetic.

We develop a formal mereological approach that reconceptualizes
prime generation through recursive construction based on part-whole
relationships. drawing on philosophical mereology. This perspective,
drawing on philosophical work and inspiration by [2], [3], and [4], while
remaining faithful to mathematical practice. Rather than challenging
established mathematical conventions, we aim to provide deeper philo-
sophical understanding of why these conventions arise and what alter-
native conceptualizations might offer to both mathematics and philos-
ophy. The framework naturally incorporates recent developments in
mathematical structuralism, [6] and [7] by treating mathematical ob-
jects as positions within recursively generated structures rather than
entities defined solely through external relations.

Our approach centers on a recursive definition where P = {Pn : n ∈
N} generates all natural numbers through finite products, with P1 = 1
serving as the necessary foundation for complete arithmetic construc-
tion. We demonstrate that this recursive approach maintains full com-
patibility with traditional number theory while providing additional
structural insights about mathematical foundations. Where divisor-
count definitions are backward-looking (testing membership), the re-
cursive definition is forward-generative (constructing the sequence). It
is through this generative approach that 1’s structural necessity be-
comes apparent.

This framework contributes to ongoing discussions in philosophy of
mathematics and foundational studies by demonstrating how alterna-
tive recursive constructions can preserve mathematical utility while
revealing different structural perspectives. The recursive framework
shows complete equivalence with classical prime theory for all n > 1
while illuminating the structural role of foundational elements in sys-
tematic mathematical construction.
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2. Mereology and Prime Numbers

2.1. Formal Mereological Framework for Prime Generation.
We introduce a new definition based on mereological principles—the
philosophical study of part-whole relationships [2, 3, 4].

Definition 2.1 (Recursive Prime Generation). Let P = {Pn : n ∈ N}
be defined recursively as follows:

(1) Base case: P1 = 1.
(2) Recursive step: For n ≥ 1,

Pn+1 = min {k ∈ N : k > Pn ∧ k /∈ Cn}

where Cn = {a · b : a, b ∈ span({Pi}ni=1), a > 1, b > 1} and
span({Pi}ni=1) denotes the set of all finite products of elements
from {P1, P2, . . . , Pn}.

2.1.1. Philosophical Foundations of the Mereological Approach. Choice
of mereological logic as our foundational framework reflects deeper com-
mitments about the nature of mathematical objects and their relation-
ships. Traditional approaches to prime theory begin with divisibility
relations—asking whether one number divides another—which presup-
poses the independent existence of both numbers as completed entities.
This approach treats mathematical objects as self-subsistent items that
subsequently enter into external relations.

Mereological logic inverts this priority by treating mathematical ob-
jects as fundamentally constituted through part-whole relationships
[2, 3]. In this framework, a number’s mathematical identity emerges
from its position within a compositional hierarchy rather than from
intrinsic properties it possesses independently of that hierarchy. The
recursive construction P = {Pn : n ∈ N} embodies this principle: each
element Pn exists not as a discovered entity but as a structural position
necessitated by the system’s compositional requirements.

This philosophical reorientation has concrete mathematical conse-
quences. Where divisibility-based definitions ask “What properties
must an object have to count as prime?”, the mereological approach
asks “What structural role must the next element play to extend the
system’s generative capacity?” The former treats primality as a prop-
erty that numbers either possess or lack; the latter reveals primality as
a structural function within recursive construction processes.

The foundational status of P1 = 1 exemplifies this distinction. Tra-
ditional approaches exclude 1 from primality to preserve unique fac-
torization, treating this exclusion as a necessary exception to general
principles. The mereological framework reveals instead that 1 occupies
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a unique generative role—not as an exception to primality but as the
structural foundation that makes primality possible. This shifts the
philosophical question from “Why should 1 be excluded?” to “What
foundational role must 1 play in any complete constructive system?”

This mereological perspective treats numbers as structured entities
with part-whole relationships rather than merely quantities or abstract
objects. In traditional mereology, an atomic part is one that cannot
be further divided within the system. Similarly, prime numbers in
our framework are atomic in that they cannot be constructed from
previously identified primes [2].

Theorem 2.2 (Completeness of Natural Number Generation). Every
natural number n ∈ N can be expressed as a finite product of elements
from P.

Proof. We prove by strong induction on n.
Base case: n = 1 = P1 is trivially a product of elements from P .
Inductive step: Assume the statement holds for all k < n. If n ∈ P ,

then n is already a product (of itself). If n /∈ P , then by construction
of the sequence P , there exist a, b ∈ span({Pi : Pi < n}) with a, b > 1
such that n = a · b. By the inductive hypothesis, both a and b can be
expressed as products of elements from P , hence so can n. □

Theorem 2.3 (Necessity of P1 = 1). For the recursive construction to
generate all natural numbers, we must have P1 = 1.

Proof. Suppose P1 = k > 1. Then the smallest product of two elements
from P would be k2, which is greater than all natural numbers in
{1, 2, . . . , k2−1}. By the recursive construction, these numbers cannot
be expressed as non-trivial products, so they would all need to be in
P . But this contradicts the minimality condition in the recursive step,
as there would be multiple candidates for P2. Therefore, P1 = 1 is
necessary for the construction to cover all natural numbers. □

Theorem 2.4 (Equivalence with Traditional Primes). For n ≥ 2, Pn

is prime in the traditional sense if and only if Pn ∈ P with Pn > 1.

Proof. Let p = Pn with n ≥ 2, so p > 1.
(⇒) Suppose p is traditionally prime. If p /∈ P , then p ∈ Ck for some

k, meaning p = a · b where a, b ∈ span({Pi}ki=1) and a, b > 1. This
implies p has non-trivial divisors, contradicting traditional primality.

(⇐) Suppose p ∈ P with p > 1. By construction, p /∈ Cn−1, so p
cannot be expressed as a product a ·b with a, b > 1 from prior elements.
This means p has no non-trivial divisors other than 1 and itself, hence
p is traditionally prime. □
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Lemma 2.5 (Equivalence to Standard Prime Sequence). Let P =
{Pn}n∈N be defined recursively as in Definition 1, with P1 = 1, and let
P′ = {pn}n≥1 denote the standard increasing sequence of prime numbers
starting with p1 = 2. Then:

{Pn}n≥2 = {pn}n≥1

That is, the recursive construction generates the standard prime se-
quence beginning at 2, with P1 = 1 functioning only as the multiplica-
tive identity and never participating in Cn.

The foundational position in the generative structure of natural num-
bers was originally formalized by Dedekind [15] and Peano [8] through
recursive successor axioms. This position was later elaborated concep-
tually in structural terms by Penrose [9], and it grounds our mereolog-
ical formulation.

Proof. We proceed by induction [5, 8]:
Base Case: P2

From Definition 1, we have:

(1) P1 = 1.
(2) C1 = {a · b | a, b ∈ M1, a > 1, b > 1}.

Theorem 2.6 (Well-definedness). The sequence {Pn} is infinite and
uniquely defined.

Proof. We proceed by strong induction on n.
Base case: P1 = 1 is well-defined by definition.
Inductive step: Assume P1, P2, . . . , Pn are well-defined. The set Cn is

finite since it consists of products of finitely many finite sets. The set
{k ∈ N : k > Pn∧k /∈ Cn} is non-empty because, by Euclid’s argument,
the number 1 +

∏n
i=2 Pi is greater than Pn and cannot be expressed as

a product of elements from {P2, . . . , Pn} with factors greater than 1.
Therefore, Pn+1 exists and is unique by the well-ordering principle. □

But:

(1) M1 = {1k = 1 | k ≥ 1} = {1}.
(2) Since all elements a, b > 1 are excluded, C1 = ∅.

Thus:

P2 = min{x > 1 | x /∈ ∅} = 2 = p1

Inductive Step: Assume {P2, . . . , Pn} = {p1, . . . , pn−1}. Then:

(1) Mn is the set of all finite products of {1, p1, . . . , pn−1}.
(2) Cn is the set of all composite numbers formed from those primes

(excluding 1 as a factor).
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Since each Pk is chosen as the minimal integer not expressible as a
product of smaller Pi’s, and since all composites are contained in Cn,
the next Pn+1 is the next integer not divisible by any smaller Pi, i.e.,
the next prime.

Thus: Pn+1 = pn
By the principle of mathematical induction, the sequence {Pn}n≥2

coincides with the standard prime sequence [9], {pn}n≥1. □

Corollary 2.7 (Unique Mereological Decomposition). Then every nat-
ural number m ≥ 2 admits a unique multiset decomposition as a finite
product [10].:

m =
k∏

j=1

Pij

where each Pij ∈ P \ {1}, and the multiset {Pi1 , . . . , Pik} is uniquely
determined up to permutation.

Interpretation (Mereological Perspective). This corollary re-
casts the classical Fundamental Theorem of Arithmetic in terms of
parts and construction:

(1) A natural number m is composed from irreducible parts (the
prime numbers Pn, with P1 = 1 excluded from participation in
composite generation).

(2) Each number greater than 1 is built from a unique collection of
irreducible constituents, viewed here not as a tuple of exponents
(as in classical prime factorization), but as a multiset of parts
from the recursive generator.

Proof Sketch. From Lemma 1, the sequence {Pn}n≥2 coincides with
the standard primes {pn}, which are known to generate all integers ≥ 2
via unique prime factorizations.

Since:

(1) Mn (the multiplicative closure of {Pk}k≤n) is exactly the set of
positive integers generated by products of these primes.

(2) No element of P\{1} is itself a product of smaller such elements.

Then: Every integer m ≥ 1 can be uniquely written as a product
of these irreducibles, which is a mereological decomposition into irre-
ducible parts, ordered as a multiset. □

2.2. Relationship to Classical Prime Theory. [Structural Rela-
tionship to Classical Theory] The recursive construction P satisfies the
following relationships with classical prime theory:

(1) Sequence Correspondence: {Pn : n ≥ 2} = {p ∈ N :
p is classically prime}
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(2) Factorization Preservation: For any n > 1, the unique
prime factorization of n in classical theory corresponds exactly
to its representation as a product of elements from {Pk : k ≥ 2}

(3) Foundational Extension: The recursive framework extends
classical theory by providing the generative foundation P1 = 1
while preserving all classical results

Proof. Statement (1) follows directly from Theorem 5. Statement (2)
follows from the construction ensuring that products involving only el-
ements from {Pk : k ≥ 2} correspond to classical factorizations. State-
ment (3) is established by Theorems 3 and 4 showing necessity and
completeness of the foundational extension. □

Insight: This framework reveals that classical prime theory cap-
tures the irreducible elements for n > 1 while the recursive construc-
tion exposes the underlying generative structure that classical theory
presupposes but does not formalize.

2.3. Recursive Structure and Asymptotic Properties. The re-
cursive framework generates prime structure dynamically through well-
defined construction rules. This contrasts with classical approaches
defining primality through divisibility testing, instead revealing primes
as emergent consequences of structural irreducibility [11].

Example 2.8 (Construction Sequence). The recursive generation pro-
ceeds as follows:

(1) P1 = 1 (base case).
(2) P2 = min{k > 1 : k /∈ {1 · 1}} = 2 (since products with factors

> 1 from {1} yield an empty set).
(3) P3 = min{k > 2 : k /∈ {1 · 1, 2 · 2}} = 3.
(4) P4 = min{k > 3 : k /∈ {1 ·1, 2 ·2, 2 ·3, 3 ·2}} = 5 (since 4 = 2 ·2).
(5) P5 = min{k > 5 : k /∈ C4} = 7 (since 6 = 2 · 3).

yielding the sequence P = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, . . .}.

Theorem 2.9 (Asymptotic Density). Let πP(x) = |{Pn ∈ P : Pn ≤
x, n ≥ 2}| denote the counting function for elements of P greater than
1. Then

πP(x) ∼ x

lnx
as x → ∞

Proof. By Theorem 5, {Pn : n ≥ 2} = {p : p classically prime}. There-
fore, πP(x) = π(x) where π(x) is the classical prime counting func-
tion. The asymptotic formula follows from the Prime Number Theorem
[11]. □

Theorem 2.10 (Infinitude of P). The sequence P is infinite.
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Proof. Suppose P is finite with P = {P1, P2, . . . , Pk}. Consider the

number Q = 1 +
∏k

i=2 Pi. Note that Q > Pk and Q ≡ 1 (mod Pi) for
all i ≥ 2. Therefore, Q cannot be expressed as a product of elements
from {P2, . . . , Pk} with factors greater than 1, implying Q /∈ Ck. By
the recursive construction, there exists Pk+1 ≤ Q, contradicting the
assumption that P has only k elements. □

2.4. The Generative Nature of Recursive Construction. The
recursive framework developed in Definitions 1–2 embodies a funda-
mentally different approach to mathematical construction than tra-
ditional recursive procedures. While conventional recursion operates
through backward reduction—defining ramified cases in terms of sim-
pler instances of the same structure—our mereological construction em-
ploys what we term generative recursion, where mathematical structure
emerges through forward-directed structural necessity.

2.4.1. Forward vs. Backward Recursion. Traditional recursive defini-
tions follow the pattern f(n) = g(f(n − 1)), where intricate cases are
computed by reduction to previously established instances. This ap-
proach, rooted in Dedekind’s foundational work on the nature of num-
ber and recursive definition [12], treats the base case as a computational
terminus rather than a generative origin. In contrast, our construction
operates through forward structural extension:

(1) Traditional Recursion: Given f(1), compute f(2), f(3), . . .
by applying reduction rules.

(2) Generative Recursion: From P1 = 1, each Pn+1 emerges as
the next structurally necessary extension.

The crucial difference lies in temporal and logical direction. Tradi-
tional recursion asks “What simpler case leads to this result?” Our
framework asks “What must come next to maintain structural in-
tegrity?”

Consider how P1 = 1 functions in our system. Rather than serving as
a mere base case for computational termination, 1 acts as the generative
seed that initiates the entire structural unfolding. P2 = 2 emerges not
because it reduces to P1, but because 2 represents the first number that
cannot be constructed from {1} under our compositional constraints.
This forward momentum continues: each subsequent prime emerges as
a structural innovation required by the system’s internal logic.

2.4.2. Structural Necessity vs. Computational Procedure. The heart of
generative recursion lies in structural necessity—the logical requirement
that certain mathematical objects must emerge to preserve the system’s
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constructive capacity. This differs fundamentally from computational
procedures that calculate predetermined sequences.

In traditional approaches, primality is determined through divisi-
bility testing: “Is p divisible by any number less than itself?” This
reactive procedure identifies primes within a pre-existing number sys-
tem. Our framework instead asks: “What number must emerge next
to extend the system’s generative capacity?”

Each prime in our construction represents a structural innovation—
a number that adds new compositional possibilities that cannot be
achieved through existing elements. P3 = 3 emerges not because it
passes a divisibility test, but because no combination of {1, 2} can
generate 3. The system requires 3 as a new generative element to
continue its structural development.

This necessity is logical rather than computational. Traditional re-
cursion computes what already exists in principle; generative recursion
discovers what must exist for logical consistency. The difference par-
allels the distinction between calculating solutions to known equations
versus deriving the equations themselves from fundamental principles.

2.4.3. Mathematical Innovation Through Recursive Generation. Gen-
erative recursion influences how mathematical structure can be self-
organizing through internal logical constraints. Rather than imposing
external definitions (such as “primes are numbers with exactly two di-
visors”), the system generates its own structural categories through
recursive self-extension.

This process exhibits three key characteristics:

(1) Self-Determination: Each step in the construction is deter-
mined by the system’s internal state rather than external cri-
teria. Pn+1 emerges from the structural requirements imposed
by {P1, . . . , Pn}, not from independent testing procedures.

(2) Irreversible Innovation: Once a prime emerges, it perma-
nently expands the system’s generative capacity. Unlike com-
putational recursion, which can retrace its steps, generative re-
cursion creates irreversible structural novelty.

(3) Logical Inevitability: The sequence that emerges exhibits
logical necessity—given the starting conditions and construc-
tion rules, the specific sequence {1, 2, 3, 5, 7, 11, . . .} represents
the unique path of structural development.

This perspective illuminates why our construction naturally incor-
porates 1 without special exclusion. In backward-looking recursion, 1
appears problematic because it disrupts computational patterns. In
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forward-looking generation, 1 is logically necessary as the unique start-
ing point that can initiate structural development without presuppos-
ing prior elements.

The philosophical implications extend beyond number theory. Gen-
erative recursion suggests a general principle for understanding how
mathematical structures emerge from simple foundations through log-
ical self-organization rather than external imposition. This framework
may illuminate similar patterns in other domains where hierarchical
structure emerges through recursive construction processes—from for-
mal logical systems to computational complexity theory to the organi-
zation of deterministic physical systems.

The recognition that mathematical objects can emerge through gen-
erative rather than reductive recursion opens new perspectives on math-
ematical foundations, suggesting that structural necessity may be more
fundamental than definitional stipulation in determining the logical ar-
chitecture of mathematical systems.

3. Mathematical Necessity of the Foundational Element

3.1. Structural Characterization of the Foundational Element.
The recursive construction reveals that P1 = 1 possesses unique struc-
tural properties analogous to ground states in physical systems. While
traditional number theory excludes 1 from primality through defini-
tional convention, our framework demonstrates that 1 occupies a math-
ematically necessary foundational position in the generative structure
of natural numbers [8].

Ontologically, this interpretation aligns with Leśniewski’s part–whole
logic [3], where prime 1 functions as the atomic part that grounds
arithmetic construction. [2] analysis of ontological atomicity further
supports this reading: although he does not address number theory
directly, his treatment of indivisible parts as structurally generative
justifies our interpretation of 1 as the irreducible root of the number
system. In this light, 1 is not merely the multiplicative identity but
the ontological ground state of the number-theoretic hierarchy—a nec-
essary structural origin from which all prime composition unfolds.

Theorem 3.1 (Foundational Necessity). In the recursive construction
P, the element P1 = 1 is uniquely characterized as the minimal element
with respect to the generative ordering, and no alternative choice for
P1 yields a complete generation of N.
Proof. We establish necessity through contradiction and uniqueness
through minimality.

Necessity: Suppose P1 = k for some k ̸= 1.
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(1) If k = 0, then products involving P1 yield 0, failing to generate
positive integers.

(2) If k > 1, then the minimal non-trivial product is k2 > k, leaving
the interval (1, k2) ungeneratable by products, violating com-
pleteness (Theorem 3).

(3) If k < 0, products may yield negative results, failing to generate
N.

Uniqueness: The choice P1 = 1 satisfies the multiplicative identity
property, ensuring that 1 · n = n for all n ∈ N, making it the unique
minimal element that preserves all natural numbers under multiplica-
tion. □

3.2. Structural Properties and Mathematical Implications.

Corollary 3.2 (Structural Distinction). The element P1 = 1 is distin-
guished from all other elements in P by the following properties:

(1) Multiplicative neutrality: 1 · Pn = Pn for all n ∈ N
(2) Generative foundation: All elements Pn with n > 1 require

P1 for complete natural number generation
(3) Irreducible atomicity: P1 cannot be expressed as a non-

trivial product within the framework

Proof. Property (1) follows from the definition of multiplication. Prop-
erty (2) follows from Theorem 4. Property (3) follows from the recursive
construction where C0 = ∅, so P1 has no predecessors for decomposi-
tion. □

3.3. Factorization Correspondence. [Factorization Correspondence]
For any natural number n > 1, the unique prime factorization in clas-
sical number theory corresponds precisely to its representation as a
product of elements from {Pk ∈ P : k ≥ 2}.

Proof. Let n > 1 have the classical prime factorization n = pa11 pa22 · · · parr
where pi are distinct classical primes and ai > 0.

By Theorem 5, each classical prime pi corresponds to exactly one
element Pki ∈ P with ki ≥ 2. Therefore:

n = P a1
k1
P a2
k2

· · ·P ar
kr

This representation is unique because:

(1) The classical factorization is unique by the Fundamental The-
orem of Arithmetic

(2) The correspondence established in Theorem 5 is bijective
(3) Products involving P1 = 1 do not affect the factorization struc-

ture since 1k = 1 for any k
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Therefore, the mereological framework preserves the essential unique-
ness property while providing the generative foundation through P1.

□

This result demonstrates that the mereological framework extends
rather than contradicts classical number theory. The inclusion of P1 =
1 provides the mathematical foundation for complete number genera-
tion while preserving all structural properties required for unique fac-
torization of integers greater than 1.

The following theorem demonstrates how this classical result emerges
naturally within our recursive framework while providing a more on-
tologically coherent foundation for understanding the relationship be-
tween mathematical objects and their structural components.

Theorem 3.3 (Fundamental Theorem of Arithmetic - Mereological
Version). Every natural number ≥ 1 can be uniquely expressed as a
product of powers of primes Pn for n ≥ 1, such that the whole n is
recursively constructed from irreducible parts via repeated compositional
operations (multiplication). This decomposition is unique up to the
ordering of parts.

The classical Fundamental Theorem of Arithmetic exemplifies how
mathematical necessity can emerge from structural relationships rather
than definitional stipulation. Our mereological reformulation reveals
this theorem as expressing a deeper principle about recursive construc-
tion and structural decomposition.

Proof. From Theorem 5, we established that our mereological defini-
tion generates the same sequence of primes (excluding P1 = 1) as the
traditional definition. Since the Fundamental Theorem of Arithmetic
holds in traditional number theory, and our prime sequence (excluding
P1) is identical to the traditional sequence, the theorem holds in our
framework as well.

Note: The foundational unit P1 = 1 serves as the mereological
ground state but is excluded from multiplicative compositions in this
theorem. It acts as the identity element for composition, not as a
proper factor. Thus, uniqueness of decomposition remains preserved in
the structural framework.

Specifically, any natural number greater than 1 can be uniquely ex-
pressed as:

n = P a2
2 · P a3

3 · . . . · P ak
k

where each ai is a non-negative integer, and the representation is unique
up to the ordering of the factors. □
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This theorem reveals how our framework maintains the essential
structural properties of traditional number theory while providing a
more ontologically satisfying account of the role of 1.

This result confirms that the classical Fundamental Theorem of Arith-
metic is a special case of a deeper mereological principle: every whole
in the number system arises from irreducible atomic elements through
a unique structure-preserving composition. Unlike classical formula-
tions that rely on external definitions of divisibility, this formulation
internalizes primality and composition, aligning with ontological struc-
turalism.

Definition 3.4 (Unique Decomposability). Every finite composite in
the number system has a unique minimal cover of irreducible parts
under recursive multiplication.

This reformulation demonstrates how foundational mathematical re-
sults can be understood through the lens of recursive construction. The
uniqueness of prime factorization reflects the logical necessity inherent
in recursive structural processes rather than merely a convenient prop-
erty of divisibility relationships.

Definition 3.5 (Minimal Cover). A minimal cover of a composite num-
ber n is a multiset of irreducible parts whose product equals n, such
that no proper subset has this property.

The Unique Decomposability axiom is equivalent to the classical
statement of the Fundamental Theorem of Arithmetic within our mere-
ological framework.

3.4. The Inadequacy of Divisibility-Based Definitions. The stan-
dard pedagogical definition of primes as “numbers having exactly two
distinct positive divisors” exemplifies how mathematical practice can
obscure structural necessities through ad hoc exceptions. This defini-
tion immediately encounters the problematic case of 1, which has only
one divisor, leading to various exclusionary formulations that treat 1
as a special exception rather than recognizing its foundational role.

The very need for systematic exceptions indicates that the underlying
definition fails to capture essential structural relationships. Our mere-
ological framework resolves this tension by revealing that 1 occupies a
categorically different role—not as a failed prime requiring exclusion,
but as the foundational element that enables all prime construction.

This definition immediately encounters the case of 1, which requires
explicit exclusion. While effective for preserving unique factorization,
this exception highlights that the divisor-based approach emphasizes



14 GARY O. LANGFORD

technical convenience over generative structure. Our framework com-
plements it by eliminating the need for such exceptions.

3.4.1. Logical Necessity and Mathematical Inevitability. The recursive
construction demonstrates how mathematical structures can exhibit
logical necessity rather than definitional arbitrariness.

Theorem 3.6 (Structural Necessity of P1 = 1). The recursive con-
struction establishes that P1 = 1 is not merely a convenient choice but
a structural requirement imposed by the goal of complete natural number
generation.

This exemplifies the broader principle: mathematical content can
emerge from logical constraints within formal systems rather than from
external stipulations.

Context and Motivation. In classical number theory, the exclu-
sion of 1 from the set of primes is typically justified as a technical con-
vention: it preserves the uniqueness of prime factorization and avoids
exceptions in theorems. But this view treats definitions as stipulations
rather than emergent from structure. Our recursive framework reveals
that this “convention” masks a deeper structural necessity: the element
1 must play a unique foundational role in any complete generative sys-
tem for N.

Logical Conditions for Generative Systems. We consider the
following necessary conditions for constructing N:

(1) Completeness: All n ∈ N must be constructible via finite
products of irreducible elements.

(2) Atomicity: The system must identify irreducible generators—
elements that cannot be decomposed into other generators.

(3) Uniqueness: Each composite number must have a unique rep-
resentation (up to order) as a product of irreducibles.

Definition 3.7 (Constructive Necessity). A mathematical structure
exhibits constructive necessity within a formal system S if it arises as
the unique solution required to fulfill the system’s generative objectives,
given its foundational constraints.

Theorem 3.8 (Necessity of the Multiplicative Identity in Recursive
Generation). Let P = {Pn}n∈N be a recursively defined sequence of
irreducible elements whose finite products generate N. Then the foun-
dational element P1 must satisfy the multiplicative identity property:

∀n ∈ N, P1 · n = n

Proof. Let F ∈ N denote the foundational generator used to initiate
the recursive construction of N. Suppose every n ∈ N is expressible
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as a finite product of irreducibles from P . Let p ∈ P be any prime,
irreducible under the construction. For p to be generated via F , we
require F · p = p. By the cancellation law in N, this implies F = 1.
Since every n is built from such p, we conclude F ·n = n for all n ∈ N,
and the only such F is 1. Therefore, P1 = 1 is not a convention, but a
structural requirement. □

Consequence: Recursive Primality with Foundational Unity.
Enforcing P1 = 1 yields:

(1) Well-founded generation: every number can be constructed from
the base case.

(2) Irreducibility clarity: primes emerge as minimal elements that
ae non-decomposable.

(3) Factorization uniqueness: representations are deterministic and
conflict-free.

Philosophical Implication. Apparent definitional choices often
reflect deeper logical necessities. The traditional exclusion of 1 from
primality represents a profound category error: treating as definitional
convention what is actually logical necessity. Recursive analysis reveals
these structural requirements.

Corollary 3.9 (Failure of Recursive Generation without Foundational
Unit). Let P ′ = {Pn}n≥2 ⊂ N be a recursive construction of irreducible
elements excluding P1 = 1. Then the system fails to satisfy at least one
of the following:

(1) Completeness of generation over N
(2) Uniqueness of factorization
(3) Closure under recursive construction

Proof. (1) Without 1, the number 1 cannot be generated, so the system
is incomplete.

(2) If 1 is excluded but acts as a neutral factor, every n has infinitely
many factorizations: n = 1 · n = 12 · n = . . ., violating uniqueness.

(3) Recursive definitions like Pn+1 := min{m /∈ span(P1, . . . , Pn)}
fail to initialize without P1 = 1. Thus, recursion collapses. □

Conclusion. Excluding P1 = 1 leads to structural failure. There-
fore, P1 = 1 is a logically necessary element of any well-defined recursive
generative system for N.
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4. Graph-Theoretic Formalization of the Recursive
Structure

4.1. Directed Graph Representation. The recursive construction
P admits a natural representation as a directed graph that reveals the
structural relationships between natural numbers. This graph-theoretic
formalization provides precise characterizations of compositional com-
plexity and connectivity properties within the number system.

Theorem 4.1 (Prime Generation Graph). Define the directed graph
GP = (V,E) where:

(1) V = N
(2) E = {(a, b) ∈ N2 : ∃Pk ∈ P , k ≥ 2, such that b = a · Pk}

Theorem 4.2 (Structural Properties). The graph GP satisfies:

(1) Root Property: in-deg(1) = 0 and 1 is reachable from no
other vertex

(2) Prime Characterization: For p > 1, p ∈ P if and only if
in-deg(p) = 1 with the unique incoming edge from vertex 1

(3) Composite Characterization: n is composite if and only if
in-deg(n) ≥ 2

(4) Path-Factorization Correspondence: The number of di-
rected paths from 1 to n equals the number of ordered factoriza-
tions of n using elements from {Pk : k ≥ 2}

Proof. Property 1: By definition, no edge (a, 1) ∈ E exists since 1 =
a · Pk with Pk ≥ 2 has no solutions in N.
Property 2: If p ∈ P with p > 1, then by recursive construction, p

cannot be expressed as a · b with a, b > 1 from prior elements. The
only way to reach p is via 1 · p = p, giving exactly one incoming edge.
Conversely, if in-deg(p) = 1 with edge from 1, then p cannot be a
non-trivial product, so p ∈ P .
Property 3: If n is composite, then n = a · b where a, b ∈ span(P)

and a, b > 1. This creates multiple paths to n, hence in-deg(n) ≥ 2.
The converse follows similarly.

Property 4: Each directed path from 1 to n corresponds to a sequence
of multiplications by elements from {Pk : k ≥ 2}, which is precisely an
ordered factorization. □

Theorem 4.3 (Complexity and Distance Properties). In GP :

(1) Shortest Path Length: d(1, n) = Ω(n) where Ω(n) is the
number of prime factors of n (counted with multiplicity)

(2) Diameter Bound: d(1, n) ≤ ⌊log2(n)⌋ for all n ≥ 1
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(3) Path Enumeration: The number of directed paths from 1 to
n equals τ ∗(n), the number of ordered factorizations of n

Proof. Property 1: Each edge corresponds to multiplication by a prime
Pk ≥ 2, so the shortest path uses exactly Ω(n) steps.

Property 2: Since each multiplication by Pk ≥ 2 at least doubles the
value, reaching n from 1 requires at most log2(n) steps.

Property 3: Each path corresponds to a sequence of prime multipli-
cations, which defines an ordered factorization. □

This graph representation provides a powerful visualization of the
mereological structure of the number system, revealing how primes
function as the generative elements of the entire structure.

4.2. Algebraic Structure and Lattice Properties. In the mereo-
logical framework, primes establish foundational relationships that de-
termine the structure of the entire number system. These relationships
can be formalized as follows:

Definition 4.4 (Divisibility Subgraph). For each Pk ∈ P with k ≥ 2,
define the divisibility subgraph:

Gk = {n ∈ N : Pk | n}

The intersection of prime influence zones Z(p) ∩ Z(q) for distinct
primes p and q corresponds to numbers divisible by both p and q,
forming a substructure of compositeness.

Theorem 4.5. The mereological structure of natural numbers forms a
complete lattice under the divisibility relation, with join operation cor-
responding to least common multiple and meet operation corresponding
to greatest common divisor.

Proof. Consider any two natural numbers a, b ∈ N. Their greatest com-
mon divisor gcd(a, b) represents the largest shared structural compo-
nent, while their least common multiple lcm(a, b) represents the small-
est number containing both a and b as parts. Since gcd and lcm exist for
any pair of natural numbers and satisfy the lattice axioms (commuta-
tivity, associativity, absorption), the natural numbers under divisibility
form a complete lattice structure. □

This lattice perspective provides a formal foundation for understand-
ing how prime numbers function as structural atoms in the mereological
framework.

Theorem 4.6 (Lattice Structure). The divisibility relation on N under
the recursive construction forms a complete lattice (L,≤) where:
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(1) a ≤ b if and only if a divides b
(2) join(a, b) = lcm(a, b)
(3) meet(a, b) = gcd(a, b)
(4) The atoms of this lattice are precisely {Pk : k ≥ 2}

Proof. The divisibility relation is a partial order on N. For any subset
S ⊆ N:

(1) The least upper bound exists as lcm(S) (when finite) or the
appropriate limit

(2) The greatest lower bound exists as gcd(S)

The atoms are elements that cover only 1 in the lattice ordering, which
are precisely the elements of P with index ≥ 2 by Theorem 10. □

Definition 4.7 (Graph-Theoretic Highly Composite Numbers). A num-
ber n is highly composite in GP if in-deg(n) > in-deg(k) for all k < n.

Theorem 4.8 (Hub Characterization). Highly composite numbers in
GP satisfy:

(1) Maximal Connectivity: They achieve local maxima in the
in-degree function

(2) Factorization Richness: They admit the maximum number
of distinct factorizations among numbers of similar magnitude

(3) Structural Centrality: They serve as convergence points for
multiple prime multiplication paths

Proof. Property 1 follows directly from the definition. Property 2 fol-
lows from the previous theorem since in-degree equals the number of
ordered factorizations. Property 3 follows from the graph structure
where high in-degree corresponds to centrality in the multiplication
network.

5. Mereological Extension to the Real Continuum

5.1. Systematic Extension of the Recursive Framework. The
recursive construction P = {Pn : n ∈ N} with P1 = 1 extends system-
atically to encompass all real numbers through well-defined algebraic
and topological operations. We establish that the mereological struc-
ture preserves its foundational properties under these extensions.

Theorem 5.1 (Integer Extension). Define the mereological integers as:

ZP = {a− b : a, b ∈ span(P)}

Then ZP = Z and every integer inherits a canonical mereological rep-
resentation.
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Proof. Every integer z ∈ Z can be written as z = a − b where a, b ∈
N. By Theorem 3, both a and b are expressible as finite products
from P , hence z ∈ ZP . Conversely, every element of ZP is an integer
by construction. The foundational role of P1 = 1 is preserved since
1 · n− 1 ·m = n−m for any integers. □

Theorem 5.2 (Rational Extension). Define the mereological rationals
as:

QP =

{
p

q
: p ∈ ZP , q ∈ span(P) \ {0}

}
Then QP = Q with unique mereological representation for each ratio-
nal.

Proof. Every rational r ∈ Q has the form r = p
q

where p ∈ Z, q ∈ N \
{0}. From Theorem 11, p ∈ ZP , and from Theorem 3, q ∈ span(P), so
r ∈ QP . The representation is unique due to the fundamental property
of rational numbers and the uniqueness established in Corollary 2. □

5.2. Completion to the Real Continuum.

Definition 5.3 (Mereological Real Numbers). Define RP as the metric
completion of QP under the standard absolute value metric.

Theorem 5.4 (Real Extension and Isomorphism). The mereological
real numbers satisfy:

(1) RP is isometrically isomorphic to R
(2) Every real number is the limit of a Cauchy sequence from QP
(3) The foundational structure from P1 = 1 extends to the entire

continuum

Proof. (1) Since QP = Q (Theorem 12) and both inherit the same
metric from R, their completions are isometrically isomorphic.

(2) This follows from the standard density and completeness prop-
erties of rational approximation.

(3) The multiplicative identity property 1 · r = r extends to all real
numbers, preserving the foundational role of P1 = 1 throughout the
extension. □

Corollary 5.5 (Transcendental Numbers). Transcendental numbers
α ∈ RP are characterized as limits of sequences in QP that cannot be
expressed through finite algebraic operations on elements from P.

5.3. Structural Preservation Properties.

Theorem 5.6 (Mereological Structure Preservation). Under the ex-
tensions N ⊂ ZP ⊂ QP ⊂ RP :
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(1) Foundation Preservation: P1 = 1 maintains its role as
multiplicative identity across all extensions

(2) Prime Structure: Elements {Pk : k ≥ 2} remain irreducible
within each extended system

(3) Factorization Coherence: Unique factorization properties
extend consistently through the hierarchy

Proof. (1) The multiplicative identity property is preserved under field
extensions.

(2) Irreducibility is maintained since no new factorizations are intro-
duced that weren’t present in the base system.

(3) The unique factorization domain properties extend naturally
through the construction sequence. □

5.4. Topological Properties. This paper has established a formal
mereological framework for prime number theory that advances both
mathematical foundations and philosophical understanding of arith-
metic structure. The investigation yields contributions on two inter-
connected levels: technical mathematical results and foundational con-
ceptual insights.

Beyond these technical results, the framework establishes a funda-
mental metamathematical principle: apparent definitional choices in
mathematical foundations often reflect deeper logical necessities dis-
coverable through constructive analysis. The recursive construction
demonstrates that P1 = 1 exhibits structural necessity rather than def-
initional convention, showing that the traditional exclusion of 1 can be
interpreted as treating a structural inevitability as a stipulation of con-
venience. This analysis exposes how mathematical practice can mask
structural requirements through systematic exceptions (such as “primes
have exactly two divisors, except 1”), highlighting that divisor-based
formulations emphasize convenience over generative structure.

The mereological perspective provides a systematic method for dis-
tinguishing genuine structural requirements from arbitrary stipulations,
offering new insights into the ontological status of mathematical objects
as positions within recursively generated structures rather than entities
defined solely through external relations. The extension to real num-
bers establishes that these foundational principles generalize beyond
discrete mathematics while maintaining structural coherence.

Theorem 5.7 (Topological Properties). The extended system RP ex-
hibits:

(1) Completeness: Every Cauchy sequence in QP converges in
RP
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(2) Density: QP is dense in RP
(3) Separability: RP is separable with QP as countable dense sub-

set

Proof. These follow from standard properties of metric completion ap-
plied to the rational extension QP . □

6. Conclusion

This paper has developed a formal mereological framework for prime
number theory that provides an alternative axiomatization through
recursive construction. The key mathematical contributions are:

(1) a rigorous recursive definition that generates the standard prime
sequence while incorporating 1 as the foundational element (Def-
inition 2.1, Lemma 2.5),

(2) formal equivalence results demonstrating preservation of all clas-
sical number-theoretic properties for n 2 (Theorems 2.4, 2.6),

(3) graph-theoretic formalization revealing structural properties of
the recursive number system (Section 4), and

(4) systematic extension to the real continuum with preserved mere-
ological structure (Section 5).

The framework demonstrates that alternative foundational choices
can preserve mathematical content while revealing different structural
perspectives. The recursive construction shows that 1 can function
as a foundational element within a systematic generative approach,
complementing rather than contradicting the conventional exclusion
of 1 that preserves unique factorization properties. This analysis il-
lustrates how mathematical foundations can admit multiple consis-
tent formulations that emphasize different structural aspects. The
mereological perspective provides insights into mathematical objects
as positions within recursively generated structures rather than en-
tities defined solely through divisibility properties. The systematic
extension to real numbers establishes that these recursive principles
generalize beyond discrete mathematics while maintaining structural
coherence, suggesting broader applications for recursive construction
methods in mathematical foundations. Rather than challenging es-
tablished mathematical practice, this work contributes to foundational
studies by demonstrating how alternative recursive approaches can il-
luminate structural relationships. The framework reveals the distinc-
tion between backward-looking divisibility testing and forward-looking
generative construction, offering complementary perspectives on the
emergence of mathematical structure through systematic recursive pro-
cesses.
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6.1. Future Directions. The recursive framework suggests several
avenues for further investigation:

(1) Foundational Studies: Investigation of recursive construc-
tion principles in other mathematical domains, exploring how
generative approaches can complement conventional definitional
methods.

(2) Computational Applications: Development of algorithms
based on recursive generation rather than divisibility testing,
potentially offering new approaches to primality testing and
number-theoretic computation.

(3) Mathematical Structuralism: Further exploration of how
alternative axiomatizations can preserve mathematical content
while revealing different structural perspectives, contributing to
ongoing discussions in philosophy of mathematics.

(4) Extensions: Investigation of similar recursive construction prin-
ciples in other number systems and mathematical structures,
including complex numbers and algebraic number fields.

The formal framework developed here provides a foundation for fur-
ther investigation of recursive mathematical structures and their ap-
plications to foundational questions in logic and mathematics, demon-
strating that mathematical foundations can admit multiple consistent
perspectives that illuminate different aspects of mathematical struc-
ture.
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